
CLOUD.CA

5
IT’LL BE RIGHT
EVENTUALLY

6
THE NEW
CAPACITY
EQUATION

8
DEVOPS IS HOW

WE MANAGE
CLOUDS 9

CLOUDS
HAVE DATA

GRAVITY

10
THE MOAT

DOESN’T MATTER
ANYMORE

4
DISASTER

RECOVERY IS
AUTOMATIC

3
BIG DATA IS

WHAT CLOUDS
ARE FOR

2
MACHINES

ARE ALMOST
FREE

1
DESIGNING

FOR FAILURE

7
HAVING YOUR

CAKE & EATING
IT TOO

by Alistair Croll

10 Ways to
Think Like a Cloud

White Paper

Rules of the new on-demand architecture

CLOUD.CA

2 420 Guy Montreal, QC H3J 1S6
1-888-796-8364

info@cloud.ca
@cloud_dot_ca

Cloud computing represents a significant shift in IT strategy. Now
that applications run on virtual infrastructure—independent of
the underlying machinery—they are portable and therefore give
third-party providers the opportunity to sell computing as a utility.

This on-demand model of computing is different from its
predecessor in a variety of ways, many of which aren’t obvious
to the casual observer. To really understand the implications of
cloud computing, we need to look at how it’s being used by early
adopters and at the design patterns and lessons they’re learning.

In this report, we’ll consider 10 fundamental shifts in IT
mindset that IT professionals need to undergo in order to “think
like a cloud.” Some of these concepts will take years to find their
way into mainstream organizations that still rely on mainframes
and traditional bare-metal computing, but eventually they’ll
affect everyone. If you take these patterns to heart, you’ll be far
ahead of the average enterprise in your IT thinking, and better
equipped to thrive in a utility computing world.

ADA—Patience. Business value does
not result in quick adoption

Any big, fundamental change in thinking takes time to catch on,
regardless of how promising it might be. For example, the advent
of object-oriented programming. Between 1985 and 1995, NASA
tried to roll out a programming language called ADA. On the
surface, it looked wonderful:

•	 Code re-use increased by 300 percent
•	 The cost of systems dropped by 40 percent
•	 Bug counts fell 62 percent
•	 Development cycles were trimmed by 25 percent.

So it was a wild success, right?Unfortunately not. Less than
20 percent of the software produced by the organization was
written in ADA, despite these advantages. Many developers
simply couldn’t comprehend the concepts of object-oriented
programming. Others resisted, wanting to stay with procedural
languages like FORTRAN for which they had libraries and tricks
they’d collected over time.

Proponents of the language didn’t help either: they promised
too much, too soon, and avoided underlying problems such as
the lack of environments and tools for experimentation. Object-
oriented programming eventually won, but not before a whole
generation of developers’ skills became obsolete.

If this sounds familiar, it should. It’s the path down which
many enterprises are proceeding, and the results are likely to be

the same: only some enterprise IT professionals will really make
the switch to cloud computing. Others may pay it lip-service,
then return to the fixed equipment and bare-metal mindset with
which they feel more comfortable.

Private clouds make everybody angry

One way to define cloud computing is by the technologies that
make it possible: virtualization, automation, auditing and ac-
counting, a service-oriented architecture, self-service interfaces
and the separation of computing from underlying hardware.

For many people, that definition means private clouds are
simply “IT done properly.” That’s because the other definition
of cloud computing is a business model: the cloud provider is
a third-party organization, a utility like the power company,
delivering when-you-need it compute cycles without upfront
investment. To this group, “private clouds” are an oxymoron.

Many enterprise IT professionals see the term as an attempt
by hardware manufacturers to sell them new equipment.
Others are convinced they’re already running clouds in-house
simply because they’ve virtualized their servers. And third-
party providers see private clouds as the fabrication of luddites,
delaying their inevitable loss of control over their infrastructure.

In other words, private clouds make everyone angry. The
debate gets in the way of reasoned discourse, so for the purpose
of this document, we’re going to ignore it. The 10 patterns
outlined here apply whether you’re using a third-party cloud, or
whether you’re running on a private cloud delivered as a service
by your internal IT team.

Without further ado, then, here are
10 ways to think like a cloud.

1 Designing
for failure
One of the fundamental tenets of the public cloud is that we
design for failure. It’s hard for many IT professionals to truly
embrace this. We’re used to calculating Mean Time Between
Failure (MTBF) and buying redundant power supplies on high-
availability hardware.

Public clouds don’t work like that. If you walk through
Google’s data centers, you’ll see thousands of cheap servers

Introduction

3 420 Guy Montreal, QC H3J 1S6
1-888-796-8364

info@cloud.ca
@cloud_dot_ca

CLOUD.CA

attached with Velcro™ to their racks, with batteries on each
server rather than in a central location. Google knows servers are
cheap, and breakable, and designs its processes accordingly.

What does this mean in practice? Consider, for example, that
you were building a web browser but designing for failure. You’d
assume that every time you clicked on a link, the server from
which you’d received the previous page was gone. As a result,
you’d do a DNS lookup to get a new IP address each time. This
would be time-consuming, but you’d know that you were always
getting a web server that was functional. On the other hand, if
you assumed that the server was relatively stable, you’d cache
the IP address and keep using it, and only look for another server
when the first one stopped responding.

This kind of trade-off—cautious, assuming it’s broken, versus
fast, assuming it’s working—is at the root of many architectural
decisions. The difference is that cloud-thinking architects design
the system cautiously, then look for opportunities to optimize;
but traditional IT architects design the system to its specifica-
tions, then try to catch problems when they happen.

You want a Service Level Agreement (SLA) from your cloud
provider that can help you determine the right cloud for your
workload. This is the subject of much contention and controversy
since cloud pundits believe the best SLA is an architecture that
assumes failure but the business case is not always there. The
cost of re-engineering your code or hiring talent that can design
for failure may be difficult to justify. If you build an application
that lives in three availability zones, Amazon will give you an
astonishingly robust SLA for data. But the application you deploy
atop it has to take advantage of that underlying redundancy and
you increase the complexity of operating the application.

2 Machines
are almost free
You need to treat machines as if they’re free, and let innovators
self-govern their usage. Many IT organizations are concerned-
about enabling self-service for developers thanks to costly
experiences with virtual machine (VM) sprawl and limited
internal capacity. Enabling reporting on resource utilization per
environment and per project moves the accountability from the
operators to the integrators and the developers. This runs coun-
ter to decades of IT frugality, but it’s essential. When you realize
that machines are simply a convenient unit of measure—not a
physical component—many cumbersome IT processes become
faster and easier.

For example:
•	 Data analysis gets easy, because you can use a thousand

machines for an hour, rather than one machine for a thousand
hours.

•	 Fixing a machine that’s misconfigured or infected doesn’t hap-
pen any more. You simply roll back to a previous copy. In fact,
you may as well give employees a fresh machine every day.

•	 You don’t need maintenance windows. At one time, you
needed to schedule downtime for an application. Now that
machines are free, you can take a snapshot of a system, up-
grade the snapshot, and switch over to the new system.1

•	 When you want to test an application, you can clone it exactly,
rather than testing on a smaller, simulated system.

•	 Business intelligence and analytics are suddenly fast and
affordable. Because machines are free, you can index data on
many dimensions, slashing the time it takes to build and query
data warehouses. When you’re done, just turn them off.

There are many other consequences of free machines. Every
time you perform a task, you need to ask yourself, “how would I
do this if I really had more machines than I’d ever need?”

3 Big data is what
clouds are for
We’re awash in data sets. Companies hoard warehouses of data
in-house, and public information is growing each year as we
click, share, like, tweet, and swipe everything we do. In recent
years, we’ve found new algorithms to speed up the processing
and correlation of all this data; and cloud computing makes its
analysis possible.

In many ways, big data gives clouds something to do. Tying
together internal and public data sets can give businesses new
insight—something web marketers quickly learned as they
started to instrument their online storefronts. Now, sales and
marketing are demanding fast, accurate updates on every aspect
of their business.

Cloud computing has unlocked a huge demand for visibility
and accountability with customers, suppliers, and nearly every
part of a business. Where once a quarterly report was suffi-
cient, now non-technical employees want real-time access to
information.

It’s essential to understand that cloud computing and data-
driven businesses go hand-in-hand. It’s not enough to be cloud-
literate; you also need to be conversant in Big Data technologies
like Hadoop, Cassandra, Bigtable, MongoDB, Riak, CouchDB,
Ceph, and dozens of others.

1 Okay, it’s not really this easy. But it’s dramatically
faster and easier than the previous approach.

CLOUD.CA

4 420 Guy Montreal, QC H3J 1S6
1-888-796-8364

info@cloud.ca
@cloud_dot_ca

4 Disaster recovery
is automatic
Microsoft’s Jim Gray, after considerable research, declared that
“compared to the cost of moving bytes around, everything else
is free.” A cloud platform needs to be able to launch, pause, and
remove an application on demand. It also needs to be resilient to
error, outage, or attack. Since the cloud doesn’t know where or
when a workload will be needed, most true clouds store multiple
copies of data—including copies of virtual machines—in many
places. This is known as sharding data.

Consider for a minute that Google’s App Engine stores four
copies of data; and Amazon allows companies to store infor-
mation in several “availability zones”
around the world. The underlying archi-
tecture of clouds makes them redundant,
which translates to “free” disaster
recovery.

In the past, having a DR strategy
meant more than doubling the cost of
infrastructure—two copies of everything,
plus the technology to keep them in
sync. With clouds, that changes. You only
pay for that second copy when you need
it (admittedly, often at a premium) and
connecting it to your primary location is
getting easier every day. Soon, even that will change: when the
cloud is the primary location, it can be automatically configured
in a redundant manner.

5 It’ll be right
eventually
Traditional design of data sources relies on them being accurate.
As developers, we want to know that the content of a database
is correct—when I check my bank balance, it had better be ac-
curate—but that correctness comes at a high price.

When several users are reading and writing data to a database
at the same time, conflicts can occur. Database Administrators
go to great lengths to make sure this doesn’t happen, because it
leads to data corruption. The bluntest instrument at their disposal
is simply locking down the database so only one person can write
to it at a time, which ensures that no conflicts occur.

Imagine for a minute that Facebook worked this way. When
you wanted to write something on your wall, Facebook would

make all the other users wait; when you were done, they’d be
free to read and comment. Obviously, this isn’t how Facebook
works—but it underscores a significant challenge in large-scale
data systems.

When you think like a cloud, you look for “eventual consis-
tency.” Many large-scale, multi-user systems favor performance
and parallelism at the expense of immediate accuracy. When
you use Twitter, for example, you may not be seeing all of the
messages from people you follow; but come back in a couple of
minutes and the list will be complete. That’s acceptable because
of the nature of the data.

In fact, banks do this too. Your bank balance has a little
disclaimer that transactions will be posted at the end of the next
business day; funds you deposit are on hold for several days in
order for checks to clear; and so on. Eventual consistency is all

around us: sometimes almost is better.
The accuracy that traditional architects crave comes at a high

cost, limiting the ability of an application to scale elastically, under-
mining performance, and making it harder to keep several copies
of information. Architects who think like clouds know that even-
tual consistency is the key to scaling and avoiding bottlenecks.

6 The new
capacity equation
For decades, IT has dealt with three basic metrics:
•	 The demand for an application (users, requests per minute,

or whatever else is consuming a resource.)
•	 The capacity of that application (number of servers, number

of threads, megabits per second of bandwidth, or whatever is
consumed.)

•	 The performance of that application (the time it takes to
download something, the time the page takes to load, or
some other measure of user experience.)

Your bank balance has a little disclaimer that
transactions will be posted at the end of the next
business day; funds you deposit are on hold for
several days in order for checks to clear; and
so on. Eventual consistency is all around us:
sometimes almost is better.

CLOUD.CA

5 420 Guy Montreal, QC H3J 1S6
1-888-796-8364

info@cloud.ca
@cloud_dot_ca

This is a gross oversimplification, but it’s the fundamental trad-
eoff that IT makes: capacity comes from how many resources
we have at our disposal. Bad user experience hurts the business,
frustrating customers and making workers unproductive. We can
express this as:

Clouds change this equation forever, because with an elastic
cloud platform, capacity is (virtually) unlimited, provided you’re
willing to pay for it.

In other words—and again, this is a massive oversimplification—
you can have any performance you want, as long as you’re willing
to pay for it. Cloud application designers will be evaluated on
metrics like cost per user-second: how much does it cost to
service a user’s request in a second.

This complicates discussions around performance SLAs
significantly. The provider will deliver good performance, for
a fee. Different cloud stacks will have different performance
characteristics, and a company will save or waste money
depending on how efficient its applications are.

7 Having your cake
and eating it too
The two dominant models of cloud computing are Infrastructure
as a Service (renting virtual machines by the hour) and Platform
as a Service (pay-as-you go computing environments in which
you ignore the underlying infrastructure entirely.) As Table 1
shows (see next page), each approach has benefits and draw-
backs.

Most of the utilities we rely on today follow the PaaS model:
a constrained offering in which the user abdicates much of their
decision-making ability. When you use electricity, you don’t get
to say which generator produces it—nor would you want to. A
cell phone bill doesn’t tell you which towers were used for your

calls. Because cloud computing is relatively new, however, we
still cling to metaphors like the Virtual Machine because they
give us convenient units of measure we understand.

The problem, however, is the simplicity promised to devel-
opers by PaaS does not cost-effectively scale in production. To
tune production for efficiency and avoid lock-in, you need the
control and breadth of options that IaaS can provide.

Cloud vendors are trying to balance the two. Amazon’s Elastic
Beanstalk is a pre-configured, automated, self-scaling platform
built from several of its services. If you don’t touch the under-
lying pieces, it scales like a PaaS; but if you start to customize it,
you lose the automatic elasticity of the system. Microsoft’s Azure
straddles the IaaS/PaaS world with a blend of code execution
and virtual machines.

When we really understand cloud offerings, we know about
the tradeoffs between control and ease of use. Unfortunately,
many IT professionals aren’t thinking like clouds yet, believing
instead that they can enjoy the turnkey elasticity of PaaS with
the portability and architectural opinions that IaaS gives them.

8 DevOps is how
we manage clouds
Cloud computing is the result of a long evolution in IT:
•	 Machines were inefficiently used, sitting idle for much of the

time.
•	 Virtualization made it possible to more efficiently consume

computing resources by letting a single physical machine run
many virtual machines.

•	 Virtual machines were easier to start, stop, and copy—making
them popular with IT operators.

•	 To handle the inevitable sprawl of easily-created machines,
and to reduce human error, we built automation tools.

•	 With automation in place, it was easy to give the end users
of those machines access to self-service consoles where they
could request and control them, taking IT out of the loop.

•	 Once portable, self-service computing was accepted, third-
party providers could offer competing services.

For decades, this transformation has been underway. It’s had a
number of other consequences, though. One is that the cycle
time for releasing and tweaking an application has diminished
dramatically, with some companies publishing code updates
several times a day. As a result, the old notion of writing software
and “throwing it over the wall” for someone else to operate has
disappeared.

performance =
demand

capacity()

performance =
demand()∞

performance =
demand

capacity()

performance =
demand()∞

CLOUD.CA

6 420 Guy Montreal, QC H3J 1S6
1-888-796-8364

info@cloud.ca
@cloud_dot_ca

Table 1 Comparing IaaS and PaaS

IaaS PaaS

Examples Amazon EC2; Rackspace Cloud;
cloud.ca; Terremark; Gogrid

Force.com, Google App Engine,
Heroku, Engineyard

Choice of application
and OS environment

Flexible: Any OS you want Limited: Use only the languages
it supports

What limits you? Machines: Number and type
of VMs you’re using

Nothing (but governors kill
long-running processes)

How you grow Manually or scripted: By adding more
machines, configuring load-balancers,
defining auto-scaling

Automatically: It just happens

Storage options Many options: file system, object, key-value,
RDBMS, or build your own on a VM

Constrained: Use the storage API y
ou’re given (i.e. Bigtable)

Portability & lock-in High portability: Portable if the machine
image is relatively standard; some manage-
ment tool standardization

Low portability: Rewrite the app and
transform the data if you want to
take it elsewhere

Billing & reporting Billing and reporting on your
infrastructure utilization

Billing and reporting on the application
utilization, including function calls

Efficiency &
optimization

Can be fined tuned and at scale this option is
proven to be up to 10X more efficient

Optimized for the speed of
development instead of the efficiency
of resource utilization

CLOUD.CA

7 420 Guy Montreal, QC H3J 1S6
1-888-796-8364

info@cloud.ca
@cloud_dot_ca

Instead, developers are now working closer with the operators
of their code, putting hooks into the applications themselves that
make the applications self-regulating. In the future, we will code
the infrastructure as well as the application. One test of this is
the tenth-story test: If you drop a random piece of infrastructure
from a tenth-story window, will your application survive?

This is known as the DevOps movement. With roots in
large-scale web operations and the Agile software development
model, DevOps is finding its way into enterprises. Tools like
Chef, Puppet, and Ansible let developers write pre-defined, self-
healing clusters of functionality. These are then deployed, and
use their control of the underlying infrastructure to grow, shrink,
and adapt to changing operating conditions.

9 Clouds have
data gravity
The late Jim Gray, who talked about the cost of moving data
around, spent much of his life analyzing the costs of computing.
He claimed that the future of computing was “hairy, smoking golf
balls,” by which he meant computers would be small, generate a
lot of heat, and be bristling with connections.

This has important consequences for clouds. Data is the
center of gravity of a cloud. Amazon launched its S3 service for
large object storage—atop which many of its other offerings are
built—roughly five months before it introduced the EC2 offering
for which it is perhaps best known. Storage is the hardest thing
to move; in many ways, a cloud is a central storage system, with
a set of surrounding services that can do things to that data.

This is a critical concept when thinking like a cloud. It’s
not about where machines live—they’re trivial, ephemeral, and
relatively tiny. It’s where the data live, and how you can access
that data. In the long game, data is the basis for lock-in (just
think about moving all your pictures from
Flickr or Picasa, or your social graph from
Facebook or LinkedIn, to get a sense of
how strong the gravity really is.)

10 The moat doesn’t
matter anymore
Many security models rely on topography. On the left of the fire-
wall is safety; on the right, dragons and horrors. We speak about
security using places: the demilitarized zone, the local area.
Cloud computing and portable workloads are quickly making
this model less reliable, because perimeters are malleable and
quick to change in an on-demand model.

Cloud security is all about workloads. Each application has
to know who has permissions, what it can do, and what environ-
ments it will run on. It may even change its behavior depending
on how it’s being used, encrypting data in one place but not
in another or restricting what information can be retrieved
depending on circumstances.

Castle walls don’t work anymore when the villagers are
roaming the countryside. Thinking like a cloud means thinking
about the applications, rather than having a false sense of
security that the application is safe because of where it’s located.

Conclusions
Cloud computing upends many of the assumptions we make
about IT. We’ve looked at a few areas, from the cost of infrastruc-
ture to the negotiation of service levels to the ability to scale
and survive outages. Thinking like a cloud will be critical for IT
professionals who want to thrive in an increasingly on-demand
world where utility computing is the norm.

Castle walls don’t work anymore when
the villagers are roaming the countryside.
Thinking like a cloud means thinking about the
applications, rather than having a false sense of
security that the application is safe because of
where it’s located.

